Pathophysiology of Intestinal Na+/H+ Exchange

نویسندگان

  • Michael A. Gurney
  • Daniel Laubitz
  • Fayez K. Ghishan
  • Pawel R. Kiela
چکیده

Several members of the SLC9A family of Na+/H+ exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na+ absorption, intracellular pH (pH i ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+/H+ exchangers are frequent targets of inhibition in gastrointestinal pathologies, either by intrinsic factors (e.g. bile acids, inflammatory mediators) or infectious agents and associated microbial toxins. Based on emerging evidence, disruption of NHE activity via impaired expression or function of respective isoforms may contribute not only to local and systemic electrolyte imbalance, but also to the disease severity via multiple mechanisms. Here, we review the current state of knowledge about the roles Na+/H+ exchangers play in the pathogenesis of disorders of diverse origin and affecting a range of GI tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

H(+)/solute-induced intracellular acidification leads to selective activation of apical Na(+)/H(+) exchange in human intestinal epithelial cells.

The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in res...

متن کامل

Mechanism of regulation of rabbit intestinal villus cell brush border membrane Na/H exchange by nitric oxide.

In the mammalian small intestine, coupled NaCl absorption occurs via the dual operation of Na/H and Cl/HCO(3) exchange on the villus cell brush border membrane (BBM). Although constitutive nitric oxide (cNO) has been demonstrated to alter gastrointestinal tract functions, how cNO may specifically alter these two transporters to regulate coupled NaCl absorption is unknown. In villus cells, inhib...

متن کامل

Transepithelial resistance can be regulated by the intestinal brush-border Na(+)/H(+) exchanger NHE3.

Initiation of intestinal Na(+)-glucose cotransport results in transient cell swelling and sustained increases in tight junction permeability. Since Na(+)/H(+) exchange has been implicated in volume regulation after physiological cell swelling, we hypothesized that Na(+)/H(+) exchange might also be required for Na(+)-glucose cotransport-dependent tight junction regulation. In Caco-2 monolayers w...

متن کامل

Intestinal anion exchange in marine fish osmoregulation.

Despite early reports, dating back three quarters of a century, of high total CO(2) concentrations in the intestinal fluids of marine teleost fishes, only the past decade has provided some insight into the functional significance of this phenomenon. It is now being recognized that intestinal anion exchange is responsible for high luminal HCO(3)(-) and CO(3)(2-) concentrations while at the same ...

متن کامل

Quantitative contribution of NHE2 and NHE3 to rabbit ileal brush-border Na+/H+exchange.

Intestinal neutral NaCl absorption, which is made up of brush-border (BB) Na+/H+exchange linked to BB Cl-/[Formula: see text]exchange, is up- and downregulated as part of digestion and diarrheal diseases. Glucocorticoids stimulate ileal NaCl absorption and BB Na+/H+exchange. Intestinal BB contains two Na+/H+exchanger isoforms, NHE2 and NHE3, but their relative roles in rabbit ileal BB Na+/H+exc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017